Hitting and commute times in large random neighborhood graphs
نویسندگان
چکیده
In machine learning, a popular tool to analyze the structure of graphs is the hitting time and the commute distance (resistance distance). For two vertices u and v, the hitting time Huv is the expected time it takes a random walk to travel from u to v. The commute distance is its symmetrized version Cuv = Huv +Hvu. In our paper we study the behavior of hitting times and commute distances when the number n of vertices in the graph tends to infinity. We focus on random geometric graphs (ε-graphs, kNN graphs and Gaussian similarity graphs), but our results also extend to graphs with a given expected degree distribution or Erdős-Rényi graphs with planted partitions. We prove that in these graph families, the suitably rescaled hitting time Huv converges to 1/dv and the rescaled commute time to 1/du + 1/dv where du and dv denote the degrees of vertices u and v. In these cases, hitting and commute times do not provide information about the structure of the graph, and their use is discouraged in many machine learning applications.
منابع مشابه
Hitting and commute times in large graphs are often misleading
Next to the shortest path distance, the second most popular distance function between vertices in a graph is the commute distance (resistance distance). For two vertices u and v, the hitting time Huv is the expected time it takes a random walk to travel from u to v. The commute time is its symmetrized version Cuv = Huv + Hvu. In our paper we study the behavior of hitting times and commute dista...
متن کاملSimple random walks on wheel graphs
A simple random walk on a graph is defined in which a particle moves from one vertex to any adjacent vertex, each with equal probability. The expected hitting time is the expected number of steps to get from one vertex to another before returning to the starting vertex. In this paper, using the electrical network approach, we provide explicit formulae for expected hitting times for simple rando...
متن کاملRandom Walks with Random Projections
Random projections have been widely used for dimensionality reduction of high dimensional problems. In this paper we show how to compute some popular random walk based proximity measures (hitting and commute times, personalized pagerank) using random projections in undirected graphs. A number of important graph-based real world applications such as image segmentation, collaborative filtering in...
متن کاملEfficient Computation of Mean Truncated Hitting Times on Very Large Graphs
Previous work has shown the effectiveness of random walk hitting times as a measure of dissimilarity in a variety of graph-based learning problems such as collaborative filtering, query suggestion or finding paraphrases. However, application of hitting times has been limited to small datasets because of computational restrictions. This paper develops a new approximation algorithm with which hit...
متن کاملFrom random walks to distances on unweighted graphs
Large unweighted directed graphs are commonly used to capture relations between entities. A fundamental problem in the analysis of such networks is to properly define the similarity or dissimilarity between any two vertices. Despite the significance of this problem, statistical characterization of the proposed metrics has been limited. We introduce and develop a class of techniques for analyzin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 15 شماره
صفحات -
تاریخ انتشار 2014